Artichoke deep learning detection network for site-specific agrochemicals UAS spraying

Oct 1, 2023ยท
Alberto Sassu
,
Jacopo Motta
,
Alessandro Deidda
,
Luca Ghiani
Alberto Carlevaro
Alberto Carlevaro
,
Giovanni Garibotto
,
Filippo Gambella
ยท 0 min read
Abstract
Input optimization is a distinguishing characteristic of Precision Agriculture approaches, helping reduce the environmental impact and costs and increase vegetable production quality. Thanks to the high automation evolution of Unmanned Aerial Systems (UAS), a new approach derived from their combination with Deep Learning techniques is leading to significant improvements in agricultural management practices. The study aims at artichoke plants detection and georeferencing as a first step for an on-the-fly, real time, UAS spraying system, and use the gathered information to monitor crop development through a multi-temporal approach. A commercial UAS, equipped with an RGB sensor, acquired images of the artichoke field located in Sardinia (Italy) during the 2021โ€“2022 season in different crop growth stages. The FPN (Feature Pyramid Network), trained and compared with the YOLOv5 (You Only Look Once) network, showed a high detection level with an average F1 score of around 90%, and satisfactory off-line performances on the Nvidia Jetson Nano board. YOLOv5 achieved the best overall result. The FPN recorded a lower recall, which is desirable to achieve a minimum number of detection errors and limit the leakage of agrochemicals on false-positive targets. The multi-temporal approach influenced detection performances, with an inverse response of precision and recall metrics. The growing index trend showed a distinct value in October, peaking at the beginning of December as expected. The proposed approach contributes to designing future automatic and reliable site-specific UAS agrochemicals application and the classification of management zones.
Type
Publication
In Computers and Electronics in Agriculture